RADIATION FLAME FRONT IN A GAS MIXTURE
WITH SOLID PARTICLES

P. B. Vainshtein UDC 533.6.01

The problem about the stationary flame front structure in a gas suspension is solved on the basis of
the representations, developed earlier, for the mechanics of multiphase multicomponent media in the pres-
ence of heterogeneous chemical reactions [1] within the framework of a diffusion (differential approximation)
to describe the radiation field [2]. The behaviorofthe system of differential equations is investigated near
the singularities corresponding to the initial and final states. Distributions of the parameters characteriz~
ing the gas, the particles, and the radiation field, as well as the dependences of the flame propagation veloc-
ity on a number of parameters governing the process under investigation (the particle diameter, mixture
composition, etc.), are presented.

The particle surface temperature during their heterogeneous combustion can achieve such high values
that the radiant heat transport becomes governing during the flame propagation over the suspension [3-5].
The gas, hence, has a lower temperature and is practically transparent in the wavelength band characteristic
for the radiating particles.

Existing theories of the radiation flame front in gas suspension [3, 4] are based on the introduction of
a mean radiation flux emerging from the high-temperature domain, and the existence of an ignition tempera-
ture is assumed. The gas mixture with the hot particlesis, hence, considered approximately as a "gray"
absorbing and emitting substance with the absorption coefficient w =nn d?/4 [6], where n is the number of
particles per unit volume, and d is the particle aiameter,

Let us note {7] in which the problem of the radiation shock structure in a two-phase chemically inert
medium is investigated in the diffusion approximation.

1. Basic Equation. Formulation of the Problem

The hydromechanics equations of a two-velocity, two-temperature continuous medium in the presence
of heterogeneous chemical reactions have been obtained in [1] in application to a gas mixture with particles.
For one-dimensional stationary motion taking account of heat transport by radiation, they are
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Here a chemical reaction of the form w ;A +%yB+wyD=wn3C+nyD, is considered, where A, B, C,
D are the symbols of chemical elements, and »| (k=11.2, 13, 14) are stoichiometric coefficients. More-
over, vy =gpny, where gy are the molecular weights of the chemical elements, my are the mass flows of
the components, o, and «, are the volume concentrations of the first and second phases, v, and v, are the
phase velocities, p is the mixture pressure, ujy and ik=uk+p/pk° are the internal energy and enthalpy, T,
and T, are the phase temperatures, J is the chemical reaction rate per unit volume, f is the interaction
force between the phases because of friction, q,, is the heat exchange between the phases, and qp is the
total radiation flux.

The parameters referring to the gas, the particles, and the radiation field will be provided with the
subscripts 1, 2, and R everywhere below. The oxidizer, reaction products, and inert gas will be distin-
guished by using the second subscripts 1, 3, and 4, respectively, Longitudinal diffusion of the components
is neglected here. Under the assumption of local thermodynamic equilibrium, the radiation transport
equations in the diffusion approximation are [2]
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Here uy, is the total radiation energy density, Iy is the optical thickness, o is the Stefan—Boltzmann
constant, and ¢ is the velocity of light.

The first equation in (1.2) is the radiation continuity equation, and the second is the diffusion equation
which establishes an approximate connection between the flux and the density of the radiation. This equa-
tion is valid in the case of weak anisotropy of the radiation field. Use of the diffusion approximation does
not assume the radiation density to be equal to its equilibrium value.

The mass, force and thermal interaction between the phases is determined exactly as in [1]:
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Here B and h are the heat and mass emission between the particles and the gas, D;, is the self-diffu-
sion coefficient of the oxidizer, k is a chemical reaction rate constant, E is the activation energy, z is the
pre-exponential factor, A, and p, are the heat conductivity and viscosity coefficients of the gas phase, Cy
is the friction coefficient, A is a numerical coefficient (in particular, A =24 for Stokes law), and NRe,

Nnut» Nnwe are the Reynolds, thermal, and diffusion Nusselt numbers, respectively.

Let us assume that the components of the first and second phases satisfy the equations of state
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Here hj (i=11, 13, 14, 2) is the enthalpy of the components for T =T, p=p;.

Equations (1.1) have the six first integrals
my -~ m, = const, my, = const, My — Vy1*Vy* My = const
nv, = const, m,v, + myUy + p = const
(n = Bag [ nd?)
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For optically thick flame fronts whose dimension [ is very much greater than the radiation mean
free path I,(I, /I «<1),the radiation flux from the high temperature domain will equal in order of magnitude
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qgr~ 0Tyt [,/ 1 (1.6)
in conformity with (1.2).

Then the interrelationship between the heat flux, because of heat conduction over the gas and be-
cause of radiation,is defined by the dimensionless parameter

I = o730,/ M (1.7)

If the particle temperature reaches high values during combustion so that II > 1, then the term taking
account of heat transmission because of heat conduction in (1.1) is negligible, In this case, the flame prop-
agation over the mixture occurs only because of radiation heat transfer.

The boundary conditions of the problem of steady flame front propagation are values of the parameters
characterizing the state of the system before (x=— =) and after (x=+«) the flame front, which will be de-
noted by (0) and (e), respectively.

Let us assume the states (0) and (e) to be characterized by complete thermodynamic equilibrium.
Then, it is necessary to give

Pos Vo Loy Marg, May, Magy, (@11/da)q = (dT,'dx)y = 0 (1.8)
Des Vey Toy Mire, Moy Myg,, (dT4/dz), = (dTy/dx), = 0
respectively in the (0) and (e) states.
The natural boundary conditions for the radiation field parameters in the (0) state are
tpo = 40Tt (¢, gy =0 ’ (1.9)
When particles are completely absent in the (e) state (m,, = 0), it is natural to give
Ure = const, gge = const (1.10)
In the case of a propellant excess, when my, = 0, it is necessary to give
upe =40l /¢, gpe=20 (1.1
in the (e) state.

Let us note that the problem is completely defined by the boundary conditions given for the particle
temperature when the radiation field is described by the exact radiation transport equation [8]. The use of
the diffusion approximation simplifies the problem substantially but raises the order of the transport equa-
tion. Hence, in this case still another boundary condition must be given for one of the field parameters,
for example, the first relationships (1.9), (1.10), and (1.11), where the second relationships are consequences
of the first, and also (1.2) and the conditions (1.8).

The solution of the problem of steady flame front propagation reduces to seeking the integral curves
of (1.1), {1.2) passing through the two singularities corresponding to the equilibrium states, i.e., to finding
the eigenvalue which is the front propagation velocity in this case.

2. Investigation of the Behavior of the System near the Equilibrium States

The reaction rate equals zero (J =0) near the initial state, and hence,
M1 = Myzgy Mg = Mygy U = ¥y

Moreover, in the low-temperature region the radiation density is very much greater than the equilib-
rium value (ug >4 oT,!/c). Then (1.2) have the solution

gr = grs exp (V'3 1g), up = —V 3 qase? exp (V 3lr) 2.1)

The quantity qg;, corresponds to a sufficiently small deviation of the radiation flux from the initial
zero value. It is assumed that the solution of the exact nonlinear system should already be used when this
flux is exceeded.

Using the equations of state (1.4) and the integrals (1.5), we obtain a solution of (1.1) in the form
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should hence be satisfied.
Therefore, just one of the parameters Tibs Tap: 9Rb is independent.

Let us turn to an investigation of the behavior of the medium near the (e) state. This state is charac-
terized by the asymptotic tendency of the reaction rate to zero as mgy — my;o, my~—Mye. Let us assume the
parameters of the first phase and the velocity of the second to be already the equilibrium values [1]

U1 = Uy = Uy P =Poy T1=Tsy Nyy1 = Nyup = 2 2.4)

Using the asymptotic expressions for the reaction rate in the diffusion combustion mode [1] for
stoichiometric mixture, excess oxidation, and excess propellant cases, respectively, we obtain asymptotic
expressions for the optical thickness
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where the zero superscript denotes parameters corresponding to some fixed state from which the asympto-
tic solution starts to be used.

Let us examine the stoichiometric mixture. Using the energy equation of the second phase [the last
equation in (1.1)] and the relationship (1.3), we obtain an equation to describe the system behavior near the
singularities in the variables (T'y, my):
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It can be seen by direct integration of (2.6) that if the function ¢y HE tends to zero as my —0 or
tends to zero more slowly than mzz/ 3, then the derivative dT,/dm, is negative, which contradicts the physi-
cal meaning. By using (2.5) it can be shown that the solution of (1.2), (2.6) which satisfies the condition
dT,/dm, > 0 as m,~— 0 is to the higher-order accuracy

, b
Ty = g (re —n)’  n = — g3 (lne — ln)* 2.7
1651‘831:1)
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If there is an excess of oxidizer in the mixture, then the equation in the (T'y, m,) variable is
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Exactly as in the previous case, it can be shown that the solution of (2.8), (1.2) which satisfies the
condition of decreasing temperature T,* as m, — 0.is to higher-order accuracy
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In the case of a propellant excess, asymptotic solutions of the equations are easily obtained; hence, in
the limit as m,' — 0 we have Ty — Tg', qg— 0 and g —0.

3. Analysis of the Radiation Flame Front Structure in a Gas Suspension

For convenience in carrying out the numerical computations, the system (1.1), (1.2) is reduced to a
dimensionless form solved for the highest derivatives [1]. Selected as dimensionless variables are

LA T, m, qr
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In order to find the integral curve passing through the two singularities corresponding to the system
state ahead of (x=—w) and behind (x=« or x=x4) the front numerically, an adjustment must be made ac-
cording to the parameter U,. For x=0, let us determine a 6,4}, such that 1< 9, < 8¢, where 9,1, must be
taken sufficiently close to unity. The quantities 6,p, qgy are determined according to 6, in conformity
with the asymptotic solutions (2.1)-(2.3). Furthermore, let us select U, so that the values of the parameters
in the limit(x —« or x — xg5) would yield values corresponding to the state (e) upon integration of the sys-
tem to the right from x=0. The asymptotic behavior of the parameters near the state (e) is determined in
conformity with the solutions (2.7), (2.9).

4., Results of the Computations

As an illustration, the combustion of carbon particles in air is considered. The papers [3, 9] are
devoted to an experimental investigation of flame propagation in a carbon—air mixture. The relatively low
values of the flame propagation velocity (~20 cm/sec)obtained by using a burner [9] were the reason why
the combustion of such mixtures was examined from the thermal theory viewpoint in a number of theoret-
ical papers [1, 10]. However, the clearly exaggerated values of the particle temperature in the computa~
tions {1} indicate that radiation must be taken into account in investigations of carbon—air flames. The
experiments [3, 4] also indicate this (particles of polymer materials were used in [4]), where the flame
propagation in pipes was investigated. High values of the velocity (~ 1-5 m /sec) and the front length (1-5
m) characteristic for the radiation mechanism of flame propagation are obtained in these papers.

Carbon combustion is accompanied by different chemical reactions which generally result in the
formation of carbon dioxide in the long run., This circumstance is particularly essential for mixtures with
a large excess of propellant when the reaction of reducing carbonic acid, which proceeds at high tempera-
tures, plays an important part. Because of the reaction of total combustion of carbon dioxide at not too
high temperature (T < 1800°K), the combustion of the carbon particles occurs as though only carbonic acid
had been formed [11]. Inthis case, the heterogeneous reaction of carbon combustion according to the equa-
tion Oy +C =C0, can be computed approximately.

Figures 1-3 present the results of numerical integration representing the structure of the radiation
flame front (vy=23.5 m/sec) in a gas suspension with the initial composition M,, =0.05 (an excess of
oxidizer}, the initial particle diameter d, =50 u, and the following thermodynamic data:

Po=1, To=2300, yi =141, p,° =018, ,° =22

epr = 0.915, ¢, = 0.714, c¢p; = 0.84, c¢p = 1.1
A = 5.89-107%, A° = 3.28-407%, Ay = 6.6-10°%
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Dyyg = 0.186, pizp = 202107, g = 146- 10 8
Buo = 182.10°°, @° = 94052

26 e cl Here p is in atm, T, in °K, p in g/em?, ¢ in J/g-deg, A in cal/
} cm-sec-deg, D in cm?/see, u in g/em* sec, and Q° in cal.
/

(eps A, D, p) were taken in conformity with [12]. The kinetic constants
were taken from [11] to be E =4+ 10 cal/mole and z =5 - 10° cm/sec.

a# / - -0 The temperature dependences of the thermodynamic coefficients

o W z,cm

Fig. 3 The following dependences wereassumed for the dimensionless co-

efficients governing the interphasal interaction [11, 13].

1 b
C, = 59 ( By \™ . 0.56N 2, 0.4

91) ’ J\]Nulz NNu‘z:

Ve 1—exp(—0.28N3) 1 —exp (—0.35V)

Here m is the exponent characterizing the temperature dependence of the kinematic viscosity.

1t follows from the graphs represented that gradual heating of the particles ocecurs first (curve 2 in
Fig. 2) because of particle absorption of the radiation issuing from the high-temperature domain. The
reaction rate is low in this domain. Later the reaction rate starts to rise noticeably and to become so
great that the heat being liberated in the particles does not succeed to be removed to the gas, and the par-
ticles start to beheated up spontaneously. This heating is particle deflagration;hence,the passage to the
diffusion combustion domain occurs. The reaction rate in this domain depends slightly on the temperature;
hence, growth in the particle temperature is retarded. Because of the diminutjon (Fig. 1) in the available
carbon (curve 2) and oxygen (curve 1) masses, diminution in the reaction rate occurs (diminution in the
heat evolution in the particles), and the particle temperature drops gradually because of heat losses by
radiation and heat supply to the gas, which tends to its equilibrium value as the particles burn up.

The radiation energy density (Fig. 3) is greater than the equilibrium value in the preheating zone
and less in the combustion zone. The inflection in the curve ufi (x) corresponding to the maximum value
of the radiation flux qR separates the flame front into two domains. Ahead of the inflection point the parti-
cles absorb more energy than they radiate (dqR/dx < 0) and are heated by radiation; after the inflection the
particles emit more energy than they absorb (dg R/dx > 0) and are cooled by radiation. As the particles
burn up, the radiation density tends to the equilibrium value corresponding to the particle equilibrium tem-
perature 6,e, and the total radiation flux takes on a constant value different from zero. An increase in the
gas temperature (curve 1 in Fig. 2) occurs because of its being heated by hotter particles. The gas tem-
perature is, hence, practically unchanged in the preliminary heating zone. This is explained by the fact that
the flame front is propagated so rapidly in this case that the particles are ignited more rapidly than they
succeed in giving off part of their energy to the colder gas. The gas is heated mainly in the diffusion com-
bustion zone; hence,its temperature reaches the equilibrium value determined by the heat of chemical
reaction,

As computations by means of thermal theory have shown [1], the gas velocity because of thermal
expansion increases sufficiently sharply, but the more inert particles are entrained in the gas motion with
a certain delay; hence, the originating flow around the particles substantially influences the velocity v,.
Thermal gas expansion occurs more slowly when radiation is taken into account, and the particles are en-
trained at once in the gas motion. Computations taking account of the possibility of relative motion of the
phases show that the particle velocity inthis case agrees with the gas velocity onthe whole extent of the front,
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Shown in Fig. 4 is the influence of the composition M,, of the fresh mixture (the remaining parameters
are the same as indicated at the beginning of this section) on the flame propagation velocity therein. The
diminution in the velocity v; as M,, increases is explained by the fact that at high flame propagation rates
the radiation heat flux heats only the particles. The fact that v, diminishes as M,, increases has been noted
in [4, 5].

The dependence of the flame front propagation velocity on the initial particle diameter d, is shown in
Fig. § for a fixed fresh mixture composition (curve 1 for M,;=0.05 and curve 2 for My, =0.11).

For small particle diameters, when combustion occurs in the kinetic domain,the time of combustion
of a fixed mass of propellant increases as the particle diameter increases, but the radiation path length also
increases, so that the velocity vy remains practically constant. For large particle diameters (the diffusion
domain}, the velocity vy diminishes as the diameter grows (v;~ do'm, m < 5),

Other conditions being equal, change in the kinetic constants can result in essential changes in the flow
mode and the flame propagation velocity. The temperature distribution in the flame front (v, =89 cm /sec)
is shown in Fig. 2 (curve 3) for a stoichiometric mixture with z=5+10° cm/sec and E =4 - 10¢ cal/mole. In
this case the flame is propagated so slowly that the gas and particle temperatures are practically the same
on the whole extent of the front.

A deduction about their qualitative agreement can be made from a comparison between velocity values
v, obtained and the results of an elementary analysis [3, 4]. However, the results of the elementary analysis
depend strongly on the selection of the ignition temperature and the effective temperature of the radiating
particles. The approach elucidated herein affords the possibility of taking account of chemieal kinetics,
heat transfer by radiation, and interphase interaction.

A comparison between experimental results [3] and results herein indicates their qualitative agree-
ment.

The author is grateful to R. I. Nigmatulin for constant interest in the research and to V. A. Prokoftev
for discussing the formulation of the problem.
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